CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED NOTES OF CHAPTER -8) GANESH KUMAR DATE:- 12/08/2021

The d & f - Block Elements

Sulphides of transition metals.

(i) Sulphides of transition metals can be obtained direct union of sulphur with the transition metals

Fe + S ____ FeS

- (ii) In sulphides, the oxidation state of the metal is generally low because sulphur is a weak oxidizing agent.
- (iii) The sulphides of transition metals are usually coloured or back. For example CuS, NiS, CoS are black, MnS is light pink, CdS is yellow etc. They are insoluble in water.

Silver Nitrate or Lunar Caustic, AgNO3:

Silver nitrate can be prepared by heating silver with dilute nitric acid.

 $3 \text{ Ag}(s) + 4 \text{HNO3}(aq) \rightarrow 3 \text{AgNO3}(aq) + \text{NO}(g) + 2 \text{H2O}(I)$

(dilute)

Properties:

- It is a colourless, crystalline compound, soluble in water and alcohol. It melts at 484 K.
- In contact with organic substances (skin, clothes, paper etc.) it blackens due to decomposition into metallic silver and thus leaves black stains when comes in contact with skin and clothes.
- (iii) It decomposes on exposure to light and hence is stored in brown coloured bottles. On heating strongly, at red hot it decomposes to metallic silver.

$$\begin{array}{rcl} & & \\ & & \\ 2\text{AgNO3}(s) & \rightarrow & 2\text{Ag}(s) + 2\text{NO2}(g) + \text{O2}(g) \end{array}$$

- (iv) With potassium chromate it gives a red ppt. of silver chromate.
- Aqueous solutions of halides, phosphates, sulphides, chromates, thiocyanates, give a precipitate of the corresponding silver salt with silver nitrate solution

e.g., AgNO3(aq) + NaCl(aq)
$$\rightarrow$$
 AgCl(s) + NaNO3 (aq)
(white)
AqNO3(aq) + NaBr(aq) \rightarrow AqBr(s) + NaNO3(aq)

 $AgNO3(aq) + NaBr(aq) \rightarrow AgBr(s) + NaNO3(aq)$

(pale Yellow)

(vi) It forms precipitate of silver oxide with NaOH(*aq*). Originally, the ppt., has a brown colour but turns black when dried.

 $2AgNO3(aq) + 2NaOH(aq) \rightarrow Ag2O(s) + 2NaNO3(aq) + H2O(l)$

- (vii) Solid AgNO₃ absorbs ammonia gas with the formation of an addition compound, AgNO₃.2NH₃.
- (viii) With potassium chromate it gives a red ppt. of silver chromate.

$$2AgNO3 + K2CrO4 \rightarrow Ag2CrO4 + 2KNO3$$

Red PPT

(ix) It gives white precipitate with hypo (sodium thiosulphate) which however dissolves in excess of hypo due to complex formation.

 $2AgNO3(aq) + Na2S2O3(aq) \rightarrow Ag2S2O3(s) + 2NaNO3(aq)$

 $Ag2S2O3(s) + 3Na2S2O3(aq) \rightarrow 2Na3[Ag(S2O3)2](aq)$

Sodium argentothiosulphate

However if hypo is not excess, the white ppt. changes to black Ag2S, slowly.

 $Ag2S2O3 + H2O \rightarrow \qquad Ag2S + H2SO4$

Black ppt.

(x) It gives white precipitate of AgCN with KCN which dissolves in excess of KCN due to complex formation.

 $AgNO3(aq) + KCN(aq) \rightarrow AgCN(s) + KNO3(aq)$

 $AgCN(s) + KCN(aq) \rightarrow K[Ag(CN)_2](aq)$

(xi) **Tollen's reagent**: It gives brown precipitate with NH4OH which however dissolves in excess of NH4OH due to complex formation.

$$\begin{array}{rcl} 2 \mbox{AgNO3} + 2 \mbox{NH4OH} & \rightarrow & \mbox{Ag2O} + 2 \mbox{NH4NO3} + \mbox{H2O} \\ & & \mbox{Brown ppt.} \end{array}$$

$$\mbox{Ag2O} + 2 \mbox{NH4NO3} + 2 \mbox{NH4OH} \rightarrow 2 \mbox{[Ag(NH3)2]NO3} + 3 \mbox{H2O} \\ & & \mbox{Diamminesilver(I)nitrate} \end{array}$$

The Ammonical solution of AgNO3 is known as Tollens reagent and gives following reactions.

(a) $2[Ag(NH3)2]NO3 + C2H2 \rightarrow Ag2C2\downarrow + 2NH4NO3 + 2H2O$ Silver Acetylide (b) $Ag2O + C6H12O6 \rightarrow 2Ag \downarrow + C6H12O7$

Silver mirror

(c) Ag2O + HCHO \rightarrow 2Ag \downarrow + HCOOH

Silver mirror

Uses.

- It is used as a laboratory reagent for the identification of various acidic radicals especially for halides. Tollen's reagent is used in organic chemistry for testing aldehydes, reducing sugars, etc.
- (ii) It is used for making silver halides which are used in photography.
- (iii) It is used in the preparation of inks and hair dyes.
- (iv) A very dilute solution of silver nitrate is used in cauterization of eyes and as dental antiseptic.
- (v) **Silvering of mirror** or for the preparation of silvered mirrors.

(vi) AgNO3 is popularly used both the quantitative and qualitative analysis. Presence of chloride (CI⁻) bromide (Br⁻) and iodide (I⁻) ions can be detected with the help of silver nitrate. However, Fluoride ion (F⁻) cannot be detected by this method as silver fluoride so formed on treatment with AgNO3 solution is soluble in water.
